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ABSTRACT: One key to optimizing the performance of polymer nano-
composites for high-tech applications is surface ligand engineering of the
nanofiller, which has been used to either tune the nanofiller morphology or
introduce additional functionalities. Ligand engineering can be relatively
simple such as a single population of short molecules on the nanoparticle
surface designed for matrix compatibility. It can also have complexity that
includes bimodal (or multimodal) populations of ligands that enable relatively
independent control of enthalpic and entropic interactions between the
nanofiller and matrix as well as introduce additional functionality and dynamic
control. In this Spotlight on Applications, we provide a brief review into the
use of brush ligands to tune the thermodynamic interactions between
nanofiller and matrix and then focus on the potential for surface ligand
engineering to create exciting nanocomposites properties for optoelectronic
and dielectric applications.
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■ INTRODUCTION

One of the critical knobs that can be turned to optimize the
performance of polymer nanocomposites is surface ligand
engineering of the nanofiller to control and enhance interface
properties.1−7 Surface ligand engineering can be as simple as
the placement of short molecules on the nanofiller surface that
improves the enthalpic compatibility between the filler and the
matrix, or as complex as several populations of polymer chains
that both add functionality and create controlled compatibility
with the matrix, as illustrated in Figure 1. In the latter case,
nanofiller assembly can be controlled independently from
surface functionality. This paper summarizes focused work on
surface ligand engineering and highlights applications that can
benefit significantly from surface ligand engineering. We limit
this article to spherical inorganic nanoparticles (nanofillers or
nanoparticles for the sake of brevity). We stop short, however,
of including isotropic inorganic nanoparticles carrying asym-
metric functionalities, which is one class of Janus nano-
particles.8,9 We briefly address the thermodynamic interactions
controlling the nanofiller/matrix interactions as well as the
chemical approaches to surface modification. We focus
primarily on optoelectronic and dielectric applications in
which the complexity of surface ligand engineering can
potentially have the largest impact.
Predicting the interaction between surface-ligand-engineered

nanofillers and small solvent molecules is relatively straightfor-
ward for spherical nanofillers. The dispersion is governed by a
balance between the filler core/core enthalpic attraction, ideal
translational entropy and, more importantly, the entropy-

related steric hindrance provided by surface ligands.10−13 When
the fillers are sufficiently small, the enthalpic driving force for
nanofiller agglomeration is primarily determined by the van der
Waals (vdW) core/core interactions.14

When dispersing spherical nanofillers in a polymer or
oligomeric matrix (even in solution), the enthalpic and entropic
effects are more complex. Small surface molecules protect the
nanofiller against aggregation either by sterically preventing
clustering, or by minimizing enthalpic differences between the
nanoparticles and the matrix, the latter of which is usually
dominant.15,16 Quantitatively, the enthalpic interactions can be
described by “effective” or “cooperative” core/core vdW
interaction energy between the grafted nanoparticles. One
route to determining this enthalpic interaction uses the
Hamaker constants of the pristine particle, the attached surface
molecules, the matrix, and the dimension of the modified
filler.17−19 As the molecular weight of the surface molecule
increases, the ligands are referred to as brushes. Monodisperse
polymer brushes have been studied extensively since the early
work of Alexander and de Gennes.20−23 This seemingly simple
approach to compatibilization, however, is complex. Intuition
suggests that a high enough graft density and molecular weight
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will screen the filler core/core vdW attractions and prevent
allophobic dewetting. This intuition has been confirmed by the
positive correlation between good dispersion and high surface
coverage or a high value of σ√N for short brushes, where σ is
the brush graft density, and N is the degree of polymerization of
the brush.24 Entropy, however, plays an increasingly large role
as the matrix molecular weight increases, and the entropic
penalty for the matrix to penetrate the brush increases. Thus, at
high graft density, autophobic dewetting (as evidenced by filler
agglomeration) occurs.25−29 As shown in Figure 2, the window
between allophobic dewetting and autophobic dewetting
becomes even narrower at higher matrix to brush molecular
weight ratios (P/N).25 For functional hybrid nanocomposites,
which require a high molecular weight matrix with sufficient
mechanical integrity and a low volume fraction of brush

polymer to ensure high nanofiller loading (above ∼10 vol %),
the parameter space for desirable filler/matrix interaction is
often limited.18 The situation is even more challenging when
functional groups or brushes that are incompatible with the
matrix are incorporated into the surface ligand system.
As a means to overcome the entropic penalty that leads to

autophobic dewetting and filler agglomeration, theoretical
investigations have focused on understanding the influence of
brush polydispersity on polymer brush behavior.30−33 Such
exploration is practical because polydispersity in molecular
weight is common especially for industrial and commercial
grade samples. It has been found that polydisperse polymer
brushes facilitate the penetration, or wetting, of the brush layer
by the matrix chains, and in turn stabilize the dispersion of
grafted nanofillers even at high graft densities, where a

Figure 1. Surface ligand engineering going from the simplest to the most complex modifications (lab on a particle).

Figure 2. Schematic wetting (or compatibility) map as a function of the matrix and brush polymer molecular weights, P and N, and graft density, σ.25

A window for achieving random dispersion exists between critical graft densities σ1 and σ2, and fillers are matrix-incompatible at all graft densities
beyond a critical value of P/N. Adapted with permission from ref 25 (Copyright © 2012 American Chemical Society).
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monodisperse brush would cause aggregation.32,33 The
polydispersity of the matrix is also important and in systems
where polydispersity is more commercially relevant, the
window of brush molecular weight and graft density that
leads to good dispersion increases.
As the simplest form of polydispersity, a polymer brush with

bidisperse molecular weight is termed a bimodal brush.
Bimodal brushes increase the controllable parameter space
from brush length, graft density, and brush to matrix molecular
weight ratio, to include long to short brush population ratio and
effective graft density.17,18,34−36 The power of this approach is
that it provides a method for independently controlling the
enthalpic and entropic interactions. The densely grafted short
brushes enthalpically screen the vdW core/core attraction,
which is especially critical for nanofiller/matrix systems with
large surface energy mismatch. The sparsely grafted long
brushes suppress entropic dewetting of high-molecular-weight
polymer matrices. Early theoretical work on bimodal polymer

brushes focused on their equilibrium conformation in a good
solvent.37−39 These studies have suggested independent density
profiles of the long and short brush populations; and, the effect
of bimodal distribution on brush conformation to be more
significant for longer chains than shorter ones.31,33 Such
bidispersity has also been used to reduce the entropic surface
tension of polymer brushes and suppress dewetting of thin
polymer films.40,41 In bulk nanocomposites, bidispersity
decreases the driving force for agglomeration. Figure 3 shows
the enhancement in indentation modulus for nanocomposites
with polystyrene (PS) brush grafted SiO2 nanoparticles
dispersed within ∼96 kg/mol PS matrices.17 Compared to
∼100 kg/mol monomodal brush systems with a graft density of
0.05 ch/nm2, the bimodal brush systems, with a comparable
long brush grafted at a graft density of ∼0.05 chains/nm2 and a
short brush of ∼7 kg/mol at ∼0.2 graft density, demonstrate
significantly improved dispersion.36 In addition, the indentation
modulus of the bimodal system is higher than both the

Figure 3. Comparison of the normalized indentation elastic modulus between bimodal brush systems (black line, ∼118 kg/mol long brush at ∼0.05
ch/nm2 graft density and ∼7 kg/mol short brush at ∼0.2 ch/nm2), monomodal brush systems (red line, graft densities and molecular weights almost
identical to those of the long brushes of the bimodal systems), and Guth predictions for SiO2 in the 96 kg/mol polystyrene matrix (green dash line).
Inset: TEM images showing the dispersion of the corresponding bimodal (black border) and monomodal (red border) systems, scale bar 100
nm.17,36 Reproduced with permission from ref 17 (copyright 2013 American Chemical Society) and ref 36 (copyright 2012 American Chemical
Society).

Figure 4. TEM micrographs of 5 wt % mixed-bimodal-brush-grafted SiO2 nanoparticles, grafted with ∼205 kg/mol PMMA long brush at ∼0.67 ch/
nm2 graft density, and ∼2 kg/mol PS short brush at ∼0.26 ch/nm2, dispersed in (a) ∼100 kg/mol PMMA, (b) ∼100 kg/mol PS, and (c) ∼300 kg/
mol PMMA matrices, scale bar 0.2 μm.
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composites with the monomodal brush modified particles and
typical theoretical predictions.17,36 This indicates that bimodal
modification improves the dispersion and leads to matrix/brush
entanglement and consequently strong filler matrix mechanical
interaction.
The next level of complexity in surface ligand engineering is a

polymer brush containing two chemically distinct species.
These are mixed brushes, and extensive research based on
mixed brushes grafted to flat or curved substrates has been
carried out with a focus on environmental responsiveness to
solvent conditions.7,42−44 A mixed bimodal brush combines the
desirable features of both bimodal and mixed brushes. It
consists of two chemically distinct polymer brush species with
significantly different molecular weights covalently tethered to
the surface of nanofillers. The long brush plays a critical role in
achieving good nanofiller dispersion when the short brush is
enthalpically incompatible with the polymer matrix. Figure 4
shows results from our group for a model system of SiO2

nanoparticles densely grafted with PS short brush and sparsely
grafted with poly(methyl methacrylate) (PMMA) long brush.
Good dispersion of nanoparticles was obtained in a PMMA
matrix, which is chemically identical to the long brush while
incompatible with the short brush. In contrast, spherical
agglomeration of grafted nanoparticles was observed within a
PS matrix, where the PMMA long brush collapses onto the
nanoparticle surface to avoid contact with the PS matrix.
Interestingly, good nanofiller dispersion did not deteriorate at
higher matrix to brush molecular weight ratios, in spite of
diminishing brush/matrix entanglement. It can be expected that
a mixed multimodal brush can provide an opportunity to add
functionality (using the short brush) while maintaining control
over dispersion (using the long brush). Ironically, it is the
complexity of multimodal surface ligand engineering that can
simplify situations where matrix-incompatible functional groups
need to be introduced into the system, and expand the choices
of nanofillers, matrices, and the surface ligand chemistry that
can be used to optimize properties.

Computation and theory have been important in guiding the
design of nanoparticle brushes for use in both colloids and
polymer matrices. Early work, including scaling models based
on simple free energy balancing45−47 and self-consistent field
theory (SCFT) lattice models,48−52 focused on analytically
describing the brush equilibrium conformation (i.e., brush
height and segment density distribution) and effective
interactions between grafted surfaces under solvent conditions.
Scaling models,53,54 SCFT,28,55−58 density functional theory
(DFT),59,60 and the polymer reference interaction site model
(PRISM)33,61,62 have elucidated the effect of the brush chain
length, graft density, polydispersity, and chemistry on the brush
wetting/dewetting behavior in a polymer matrix, interaction
potential between grafted nanoparticles, and the resulting
morphology of nanocomposites. Although many models have
focused on situations where the grafted polymer is chemically
identical to the matrix polymer,33,56,57,63−65 there are a few that
have handled the complexity of mixed polymer brushes.66,67 An
in depth discussion is outside the immediate scope of this
paper, but a comprehensive summary of modeling and theory
studies can be found in a number of excellent reviews.27,68−72

■ OPTOELECTRONIC APPLICATIONS
Surface ligand engineering has exciting implications for
advanced optoelectronic applications. For example, theoret-
ically we can take the various complexities described above and
piece them together to create a polymer nanocomposite that is
flexible and transparent, with both high refractive index and
color conversion capability, and that reversibly responds to
external stimuli such that the spatial distribution or extent of
the optoelectronic properties can be dynamically controlled by
an electric field or temperature (Figure 5). In the simplest case,
taking advantage of the intrinsic properties of the fillers (such as
nanoscale size to limit light scattering and suitable crystalline
phase for high refractive index) and polymer matrices (such as
flexibility, good processability, and transparency) still requires
good nanofiller dispersion.5,73−75 Given the refractive index
mismatch (and thus enthalpic incompatibility) of filler and

Figure 5. “Jigsaw puzzle” of the types of surface engineered molecules that could potentially be pieced together on a nanoparticle for optoelectronic
applications.
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matrix, surface ligand engineering is essential. It could be as
simple as a single population of chains with functional
groups,76−84 or a bimodal population of chains that maintain
good dispersion of the filler within the matrix17,18,34,36 or as
complex as adding multiple functionalities while still using long

chain ligands to ensure matrix compatibility.85 These additional
functionalities could include: photoluminescence, stimulus-
responsiveness, energy conversion and storage, etc.

2.1. Dispersion in Solvents. Extensive studies on
functionalizing nanoparticles using surface ligand engineering

Figure 6. PL spectra showing how the attachment of an organic fluorophore ligands influences the fluorescent emission of functionalized
nanoparticles.77,88 (a) Rhodamine B (RhB) fluorophore; (b) Zn(MQ)2 complex (MQ: 5-(2-methacryloylethyloxymethyl)-8-quinolinol); (c, d)
corresponding fluorophore-functionalized nanoparticles to a and b; (e) functionalized nanoparticles suffering from concentration-quenching due to a
higher graft density. Inset: digital photo for the a and c solution, respectively, where white light photoluminescence was obtained through mixing of
yellow and blue emissions. Reproduced with permission from ref 77 (copyright 2008 Wiley−VCH) and ref 88 (copyright 2008 IOP Publishing).

Figure 7. Photoswitching of surface ligands with a spirobenzopyran (SP) group to the fluorescent merocyanine (MC) form for use in direct laser
writing80,81 and switchable multicolor luminescent systems.90 (a) Phototriggered aggregation and sedimentation behavior of SP-functionalized SiO2
colloidal particles and their patterning process for 3D porous microscale structures. Inset: reflectance-mode confocal microscopy image of self-
supported mushroom structure. (b) Thermoresponsive polymer brush with inner and outer layers of the brush selectively labeled with fluorescence
resonance energy transfer (FRET) donors and photoswitchable acceptors. The FRET process can be controlled by UV/visible light irradiation,
meanwhile thermo-induced collapse/swelling of the thermoresponsive PNIPAM gives rise to another level of modulation of the FRET efficiency by
tuning spatial distances between fluorescent donors and acceptors. Reproduced with permission from ref 80 (Copyright 2009 Wiley-VCH), ref 81
(copyright 2006 American Chemical Society), and ref 90 (copyright 2009 American Chemical Society).
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have been completed on solvent suspensions or hybrid
nanoparticle/solvent mixture systems. As a means for
introducing photoluminescence for various applications such
as luminescent tags, display planes, light emitting devices,
etc.,75,86,87 the use of rare-earth compound nanocrystals can be
replaced with surface ligands containing fluorescent organic
compounds. The surface-functionalized nanoparticles give
fluorescent emission that can be tuned without changing the
intrinsic crystal structure and size of the nanoparticles,76,88 or
provide mixed light of different wavelengths split from only one
fluorophore emission (Figure 6).77 The functionalized nano-
particles can further react with a range of substrates/surfaces to
create fluorescent labeled objects.78

Another desired feature of optoelectronic materials is
stimulus-responsiveness, which leads to many potential
applications in sensors, optical switching, optical recording,
pattern formation, and other photomodulated devices.79−82,89

Functional units or polymer brushes that are responsive to the
change of light, temperature, solvent quality, or electric field
could be incorporated into the surface ligand systems. This
approach has proven useful in manipulating the ligand
conformational transformations to (1) modulate nanoparticle
solubility in organic solvents,89 (2) direct colloidal deposition
onto photoswitchable substrate regions,79,80 (3) interfere with
other molecular functionalities integrated on the nanoparticle,
such as switching of the fluorescence resonance energy transfer
(FRET) process, to provide additional levels of modulation of
the FRET efficiency (Figure 7).90−92 In addition, the diversity
of the surface ligand engineering toolbox allows optimization of
nanoparticle/ligand interactions, such as energy and electron
transfer processes from a surface-bound dye to the nanoparticle
conduction band, leading to potential applications in light
harvesting and photovoltaic solar cells.93,94 Solar cell efficiency,
which is largely determined by the efficiency of excited-state
electron transfer process from a sensitizer dye to a semi-
conductor nanoparticle surface, could be tuned by varying the
distance and anchoring orientation of the dye unit with respect
to the nanoparticle surface.95

2.2. Dispersion in Polymer Matrices. Another key piece
of the puzzle after functionalization, however, is dispersion of
the functionalized nanoparticles into polymeric matrices. This is
important not only for realizing the processability and
commercialization of the optoelectronic materials, but also for
taking advantage of the intrinsic properties of filler and matrix
materials.5,96,97 Flexible high-refractive-index optoelectronic
materials with high optical transparency can be obtained by
uniformly dispersing high-refractive-index nanoparticles such as
TiO2 or ZrO2 into processable transparent polymer matrices,98

leading to widespread applications including optical adhesives,
encapsulants for light-emitting diode devices (LEDs), antire-
flective coatings, polarizers, optical data storages, and optical
waveguides, etc.35,73,98−103 The biggest challenge in dispersing
high-refractive-index nanofillers in polymer matrices lies in their
strong enthalpic incompatibility.5 Success has been achieved in
in situ incorporation of nanoparticles,76,88,104 or homogeneous
dispersion of nanoparticles in low molecular weight polymer
matrix,105 where the strongly bound matrix-compatible surface
ligands not only markedly diminish the specific surface energy
mismatch but also readily interpenetrate with short matrix
chains to suppress autophobic dewetting. However, optimizing
the optical properties of polymer nanocomposites requires both
a high volume fraction of nanofiller, for greater property
enhancement, and high molecular weight of matrix, for better

mechanical integrity. In this case, conventional attempts to use
a single population of surface ligands to control nanoparticle
dispersion are challenged by a dilemma between the need for
high graft density to reduce particle core/core attractions and
the need for low graft density to reduce the entropic penalty for
matrix penetration into the brush.24,25,106 Dispersing a large
volume fraction of nanoparticles with a large surface energy
mismatch into a bulk polymer matrix was successfully achieved
using bimodal brush surface ligand engineering leading to mm-
thick transparency polymer nanocomposites for LED encapsu-
lants, as shown in Figure 8b.18,34

2.3. Added Functionality and Controlled Dispersion.
Putting together the pieces of the puzzle, we can also create
functionalized nanoparticles and disperse them. Earlier work
attempting to simultaneously introduce functionality and matrix
compatibility onto nanoparticle surfaces was achieved with a
polymeric ligand system containing a robust anchor, a
functional molecule, and a group that increased the solubility
of the nanoparticles in organic solvents tailored for various
potential applications.107 For ex-situ preparation of bulk
polymer nanocomposites, surface functionalities typically do
not protect the nanoparticles against agglomeration. Thus, in
order to have independent control over functionality and
matrix compatibility, a mixed-multimodal-brush approach is
more powerful. In a notable example, yellow-emitting organic
phosphor molecules with suitable anchoring groups were
attached onto bimodal brush grafted ZrO2 nanoparticles.85

The matrix-compatible bimodal brushes ensure homogeneous
dispersion of the nanoparticle within high molecular weight
commercial silicone matrix, as shown in Figure 8c; meanwhile
the phosphor ligands offer tunable photoluminescence proper-
ties of the nanocomposites in terms of (1) the robust anchoring
of organic fluorescent group effectively reduces nonradiative
quenching and therefore gives more efficient fluorescent
emission; (2) the phosphor intermolecular spacing can be
controlled by the mixed-multimodal-brush design including
varying the graft density and volume fraction of each brush
population, as well as the loading fraction of functionalized
nanofillers. The obtained high-refractive-index nonscattering
color-conversion silicone nanocomposite is a promising
candidate for white LED encapsulation.85 As a proof-of-concept
trial, we created a similar mixed-multimodal-brush modified
ZrO2/silicone system. With optimized graft density of
phosphor ligands ensuring highly efficient fluorescent emission,
the functionalized nanoparticles were uniformly dispersed

Figure 8. Comparison of the transparency (which is critically
dependent on dispersion) between (a) monomodal, (b) bimodal,
and (c) mixed multimodal brush modified nanoparticle/silicone
nanocomposites.18,85 Reproduced with permission from ref 18
(copyright 2013 American Chemical Society) and ref 85 (copyright
2013 Cambridge University Press).
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within silicone matrices at different loading fractions. The
transparent hemispherical-shaped nanocomposites were excited
with a blue LED and the resultant CIE color coordinates were
measured to demonstrate the color-tuning capability of the
nanocomposite, as shown in Figure 9.

Looking forward, we envision even more complex nano-
composite systems. For example, to make a flexible, trans-
parent, high-refractive-index, color-converting polymer nano-
composite with dynamically controllable properties, we can
utilize mixed multimodal surface ligand engineering (Figure
10): long brushes grafted onto high-refractive-index nano-
particles at a relatively low graft density to tailor the entropic
interaction and interparticle spacing, two shorter brush species
with organic fluorescent groups and stimuli-responsive units,
respectively, attached to introduce photoluminescence and
external field mobility, and the residual grafting sites on the

particle surface filled with a densely grafted short brush to tailor
the particle core/core enthalpic interaction. The graft density
and volume ratio of each brush species can be adjusted to
prevent high-refractive-index nanoparticle agglomeration as
well as promote more efficient fluorescent emission by
localizing organic fluorescent groups in a manner that reduces
nonradiative quenching. Such nanocomposites will offer
exciting possibilities in advanced lighting applications such as
dynamic optical control, including color mixing and beam
shaping, of smart LED devices at the luminaire level.
Mechanical integrity and the shape changing ability of the
nanocomposite can be tailored by further introducing addi-
tional network-forming groups, as in an organogel, into the
long brush chains, or adapting a suitable encapsulation material
for dynamically adjustable shape and graded refractive index
gradients for new levels of optical control in future lighting
systems.

■ NANODIELECTRICS
The enhanced dielectric properties of nanofilled polymers have
led to significant research in this field.108−110 For example, the
addition of nanoscale fillers to traditional insulating polymers
has led to 50% improvements in dielectric breakdown strength
and order of magnitude improvements in endurance
strength.108,111 Although the mechanisms leading to this
improvement are still under investigation, the primary cause
is likely related to carrier trapping and scattering at the
nanofiller/matrix interface during the development of elec-
tronic avalanches. Nanocomposites have also exhibited both
permittivity below and above that predicted theoretically, and
in some cases, the permittivity can be increased without
increasing the loss in frequencies of interest.112 The tailorability
of the dielectric constant is due to the high dielectric constant
of some nanofillers, the ability of the nanofillers to alter local
polymer chain mobility, morphology, and the local interfacial
polarization that occurs or is introduced through surface
ligands. Comparison of the effect of nanofiller dispersion on
breakdown strength113 and permittivity114 as well as identi-
fication of electronically altered behavior of the matrix in the

Figure 9. CIE x−y coordinates and corresponding digital photographs
of a blue LED coated with silicone nanocomposites containing mixed-
multimodal-brush modified ZrO2/silicone nanoparticles at different
loadings.

Figure 10. Schematic view of a nonscattering color-converting LED encapsulant with dynamically controllable refractive index gradient for advanced
solid-state lighting applications. Graft density and volume fraction of each brush populations are adjusted for optimal color-converting efficiency and
light extraction efficiency.
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region around the filler particles115−117 singles out the matrix/
filler interface as the critical feature in determining the dielectric
properties of a nanocomposite.118−121 Therefore, surface ligand
engineering is a powerful means for tailoring the interface and
thus dielectric properties that impact a variety of dielectric
applications (Figure 11).
3.1. Dispersion in Polymer Matrices. Control over

dispersion is critical to fully realizing the potential of the
nanofiller interface to tailor the permittivity, breakdown
strength, and endurance.122 Poor dispersion will lead to
agglomerates that induce the same deleterious effects as their
micrometer-scale counterparts. Micrometer-scale defects crip-
ple dielectric breakdown strength while increasing dielectric
losses.118,123−125 Additionally, because of the random nature of
agglomeration, high-aspect-ratio asperities may be created,
leading to significant local field concentrations, further reducing
breakdown strength (though potentially increasing permittiv-
ity). Thus, at the very least, surface modification is required to
control dispersion. This control has been achieved repeatedly
through ligand engineering42,126 and has been demonstrated
directly in nanodielectrics, increasing breakdown strength by up
to 50% through the reduction of agglomeration.127−129

Challenges still exist, however, when nanoparticles with short
molecule ligands have been scaled up for commercial use.
Accordingly, the use of brushes, particularly in thermoplastics,
should be more fully explored. The challenge here lies in the
attachment of polymer brushes with the chemistry compatible
with typical insulating materials such as olefins. It is also
important to note that unlike in optical applications, random
dispersion may not be the optimal mixing state. Though
unstudied to date, semidisperse structures such as strings or
sheets or fractal-like structures130 may be the key to
optimization permittivity and breakdown.113 This level of
control also requires the use of brushes. This is a relatively
unexplored area ripe for optimization.

3.2. Altering Matrix Chain Mobility. Once dispersion has
been achieved, a significant opportunity for surface ligand
engineering is in altering the chain mobility in the interfacial
region.131 Reduction in matrix chain mobility reduces the
permittivity.132 In general, in systems where the matrix is
strongly associated with the filler causing an increase in the
glass transition temperature there will also be an accompanying
decrease in permittivity.133,134 Mobility can be reduced through
polymer ligands that entangle with the matrix or short ligands
that covalently bond with the matrix.112 In addition, this
decrease in mobility is accompanied by a reduction in free
volume which is hypothesized to be a critical factor in
increasing breakdown strength.135 Covalent bonding of nano-
fillers to the matrix through cross-linkable functional groups is
expected to reduce mobility and free volume and has been
shown to be effective at increasing breakdown strength.136,137

Mobility can also be altered through changes in the crystalline
structure. All else being equal, crystalline regions have a lower
permittivity and lower loss because of limited molecular
mobility due to increased packing density.138 Short molecules
can alter the filler surface energy, which alters nucleation and
growth139−141 and thus the local crystalline morphology. These
changes in crystalline morphology can impact both permittivity
and breakdown strength through the same mechanisms
discussed above.142,143 This is also an area that deserves further
exploration. An interesting alternative was demonstrated in
ferroelectric polymers in which the crystalline regions are
implicated as the primary source of their remarkable polar-
izability. The use of nanofillers to enhance crystallinity
produced enhanced permittivity in these systems.144,145 Percent
crystallinity and crystallite size display significant effects on
breakdown strength in polymers as well146 and though not well
studied as of yet, control over microstructure through the
addition of nanofillers offers yet another knob for tuning
dielectric properties. These morphological changes provide an
interesting opportunity enhancing the dielectric strength and

Figure 11. Schematic view of example dielectric applications critically dependent on breakdown strength. Composites utilizing mixed bimodal brush
grafted filler particles comprised of long chains to control dispersion and short electronically functional chains for breakdown strength enhancement
may revolutionize materials design for dielectrics.
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controlling permittivity in dielectric composites through ligand
engineering.
3.3. Electronically Active Ligands. Polar groups can also

be grafted to the nanofiller surface directly to enhance
permittivity above the values predicted by traditional
permittivity models.147,148 In some cases, these groups may
form due to a reaction with the filler surface,147 but can also be
tailored via coupling agents.114 The challenge in this case is that
the polar ligands can cause aggregation, again pointing to the
need for more complex surface ligand design. One can envision
an opportunity for bimodal ligand engineering in which the
polarizabilty of the interface region is increased using a high
density of short ligands and the interaction with the matrix is
controlled using a low density of polymer brushes to either

covalently link with the matrix or alter the local matrix
morphology. Permittivity data from composites using this
scheme of ligand architecture can be seen in Figure 12, where
the composite is seen to display permittivity higher than the
matrix or filler, or even the unmodified filler in composite.
Another interesting opportunity is the use of surface ligands

to enhance electron trapping and or scattering, or even local
conductivity. Electron trapping molecules at the surface of the
nanofiller are theorized to be responsible for a reduction in
average carrier mobility and energy in the polymer150 and have
been shown to provide substantial benefits to breakdown
strength even at elevated temperature.102,151 Selection of active
groups which best induce additional trapping of electrons at the
filler surface will further enhance surface scattering effects, and

Figure 12. Real permittivity of an epoxy (bisphenol A diglycidyl ether based) and two SiO2/epoxy nanoparticle composites, one with unmodified
SiO2 nanoparticle fillers, and one with mixed bimodal brush modified fillers (long chain: ∼10 kg/mol polyglycidylmethacrylate for matrix-
compatibility; short chain: trithiophene oligomers). SiO2 nanoparticle fillers with mixed bimodal surface ligands drive composite permittivity higher
than that of the base resin (shown) or SiO2 (3.9).

149

Figure 13. Comparing dielectric composite properties to polar Hammett constants of ligand molecules reveals dependence of bulk composite
properties on interface chemistry.152 Reproduced with permission from ref 152. Copyright 2013 American Chemical Society.
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studies of the systematic variation of these surface properties
are finally beginning to reveal the enormity of their implication
for dielectric material design (see Figure 13).152

3.4. Added Functionality and Controlled Dispersion.
The challenge of the recent work on introducing electron
trapping ligands is that the fillers agglomerated due to surface
modification. To truly understand the effect of surface electrical
behavior on permittivity and breakdown strength as well as
control their interdependence, dispersion must be independ-
ently controlled through the creation of a mixed bimodal brush.
The combination of good dispersion to maximize the available
interface and tailoring interface properties to enhance trapping
activity will provide a powerful two-prong strategy for
enhancing breakdown strength in polymers. Recent work
using mixed bimodal brush modified nanoparticle fillers has
revealed that controlling both dispersion and surface chemistry
can create improvements in AC breakdown strength greater
than 40% at loadings as low as 2% (see Figure 14),149

generating improvements greater than those seen with
dispersion control or electroactive small molecules alone.
Further development of multimodal surface modification

through ligand engineering will allow for the combination and
tuning of multiple functionalities leading to materials with
properties adjustable for specific dielectric applications. Other
phenomena often implicated in insulation failure are water
absorption leading to the development of water trees, the
evolution of space charge under applied fields and field
concentrations at defects. Surface chemistry has been shown to
be capable of altering water absorption,153−155 which could
mitigate water tree formation. Surface chemistries that enhance
local conductivity have been shown to limit space charge build
up by allowing some relaxation of charge concentrations.156−158

As space charge build up is implicated in insulation failure over
time, this mitigation may substantially enhance insulation
lifetime. Field concentrations could also be mitigated with field-
dependent kinetic dissociation of stress grading molecules on
particle surfaces, similar to that of tree-retardant grades of
cross-linked polyethylene.159 If ligands that cross-link upon

exposure to internal partial discharges can be designed and
grafted to the filler surface, a mechanism for limited self-healing
in insulation could also be achieved. Multimodal surface
modification’s true strength is in permitting the isolation of
particular properties of the interface while controlling for
conflating parameters. In addition to the creation of multi-
functional surface modified fillers for engineering solutions,
fundamental mechanistic studies will benefit from this control.
Ultimately, the multifunctionality of ligand engineered surfaces
is only limited by synthetic chemistry and ambition, and
virtually any combination of characteristics might be achievable
with the appropriate populations of surface ligands. Designing
materials precisely tailored across a wide range of properties is a
tantalizing goal, and is likely the next step in the advancement
of spherical nanocomposite engineering.

■ APPROACHES USED IN SURFACE LIGAND
ENGINEERING

4.1. Surface Grafting Chemistry. Generally, surface ligand
engineering includes two strategies, namely “grafting from” and
“grafting to”. In the “grafting to” method, free molecules/
polymers, containing functional groups, react with nanofiller
surface functional groups to create a covalent linkage. Because
of steric hindrance, the graft density depends on the molecular
weight and flexibility of the molecules.
Silane coupling, phosphate coupling, and “click chemistry”

can all be used for “grafting to” a variety of nanoparticles, such
as TiO2,

160 ITO,161 and SiO2.
9,162−165 Silane coupling has been

widely reviewed.165,166 More phosphate functional groups have
been used to attach molecules to the surface of titania,160,167

barium titanate.168 In addition, the use of copper-catalyzed
azide−alkyne cycloaddition (“click chemistry”) has become a
common tool for grafting to and can be used on polymers
synthesized using a variety of methods9,160−164 because of the
easy preparation of clickable blocks (alkyne and azido end-
capped moieties) and high efficiency and specificity of the
reaction. It does, however, leave a copper catalyst in the
mixture.

Figure 14. Weibull plots of dielectric breakdown for a neat epoxy and two SiO2/epoxy nanoparticle composites, one with SiO2 particles modified
with a single population of matrix compatible chains, and one with mixed bimodal brush modified fillers. SiO2 nanoparticle fillers with mixed bimodal
surface ligands are show to increase breakdown strength over that of the neat epoxy or the composite with only matrix compatible chains.149
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One technique that can be used to tailor the brushes before
attachment is reversible addition−fragmentation chain transfer
(RAFT) polymerization which is adaptable to almost all radical
polymerizable monomers. For example, it can be used to
prepare alkyne and azido end-capped polymers for “click”
reaction or through the use of a trimethoxysilane containing
RAFT agent165 to create a polymer that can couple to the
hydroxyl groups common on metal oxide nanoparticles. Atom
transfer radical polymerization (ATRP)166 was also used to
graft a previously prepared triblock copolymer to silicon wafers.
In the “grafting from” method, polymerization is initiated on

the nanofiller surface and the polymer grows in situ. This
technique can generate a relatively high graft density due to the
absence of steric hindrance. A variety of controlled radical
polymerizations (CRP), such as ATRP, nitroxide-mediated
polymerization (NMP) and RAFT, have been employed to
graft a wide range of polymers from surfaces over a broad range
of graft densities.163,169−181 These methods have been reviewed
by Benicewicz,182 Brittain,183 Matyjaszewski,184,185 and Per-
rier.186

Recently, nanofillers with bimodal polymer brushes have
been developed to decrease the entropic interfacial tension
between the grafted and the matrix polymer brushes, and
suppress dewetting in polymer matrices.167 There are only a
few reports on the preparation of bimodal brush grafted
surfaces. Minko et al.187 grafted two incompatible polymer
brushes, carboxyl-terminated polystyrene and poly(2-vinyl-
pyridine), to silicon wafer consecutively via a “grafting to”
technique. Zhao and He188 reported using a surface anchored
“Y” shaped initiator to consecutively conduct ATRP and NMP
for grafting poly(acrylic acid) and polystyrene mixed bimodal
brushes on silicon wafer. Benicewicz et al.36 first reported
preparing bimodal polymer brushes on small size SiO2
nanoparticles (diameter <100 nm), which is significant for
polymer nanocomposites because bimodal brushes had
previously only been grafted on silicon wafer or 150 nm SiO2
particles. The synthesis was based on consecutive RAFT
polymerizations. The original SiO2 nanoparticles were reacted
with 3-aminopropyldimethylethoxysilane to form amino
functionalized SiO2 nanoparticles followed by the reaction
with mercaptothiazoline-activated RAFT agent (CPDB) to
obtain RAFT agent coated nanoparticles. After the first surface-
initiated RAFT polymerization, the terminal dithiobenzoate
moiety was removed by treating with excess amount of AIBN.
The exact surface chemistry was repeated one more time to
obtain a second population of polymer brushes. This synthesis
strategy can be widely employed to prepare bimodal
homopolymer brushes and mixed brushes on surfaces including
PS/PMMA, PS/PS, and PMMA/PMMA (1st population/2nd
population of polymers).
4.2. Ligand Exchange Process. For some nanofillers, such

as TiO2, ITO, and CdSe quantum dots (QDs), ligand exchange
is an important strategy to prepare polymer brushes that are
firmly attached to the nanoparticles. In this process, weakly
bound molecules are replaced by molecules that can strongly
bond to enhance the interactions between surface attached
polymers and substrates. Oleic acid has been used as an
important and common ligand in the synthesis of many metal
oxide nanoparticles. It is quite helpful to stabilize the
nanoparticles and improve the dispersity in some organic
solvents. However, oleic acid is a weak binder and is usually
replaced with a silane agent189 and phosphonic acid/
phosphate34,160,161,167,190 moiety to obtain stronger binding. A

wide variety of surfaces, such as TiO2,
160,167 ITO,161 QDs,34

iron oxide nanoparticles,189,191−193 and nanocrystals,194−203

have been modified via ligand exchange process.
4.3. Characterization of Surface Ligand Engineering.

The characterization of ligand-functionalized nanoparticles is
critically important for nearly all applications, with particular
emphasis on the nanoparticle−ligand binding and surface chain
characteristics with monomodal, bimodal, mixed bimodal, and
multimodal distributions. There are several factors that need to
be well-characterized in surface ligand engineering. The first
one is graft density. A variety of small molecule ligand-
functionalized nanoparticles have been analyzed using their
unique UV−vis and/or IR absorptions.181,204 The number of
small molecules bound to the surface can be measured
quantitatively based on the comparison between the
absorbance of ligand functionalized particles and a standard
UV−vis absorption curve plotted from known concentrations
of free ligands. The graft density of polymer grafted
nanoparticles can be determined by TGA when the polymer
brushes have a narrow length distribution. The second factor is
grafting distributions. The polymer length distribution can be
easily characterized by GPC analysis of cleaved polymer chains.
However, the characterization of spatial distribution of the
brushes on particle surfaces is not easy. Recently, significant
progress has been achieved in characterization of spatially
symmetric and asymmetric distribution of surface function-
alities.8,205,206 TEM so far is the main technique to qualitatively
characterize the asymmetric distribution of surface function-
alities.207−212 The third factor is the morphology of surface
grafted brushes. The specific morphology of the brushes is
affected by the interactions between the brush and the
dispersion solvent or polymer matrix. The dimensions of the
brush have been characterized by dynamic light scattering
accompanied by theory and simulation.213−220 In benign
solvents, the nanoparticle-attached spherical brush morphology
agrees with the dimensions of free chains in the same
solvents.221 In polymer matrices, small-angle neutron scattering
(SANS) accompanied with selective labeling demonstrated that
there is a significant reduction of the brush dimensions in
polymer matrices compared to typical organic solvents.222

Kumar et al.223 recently specifically discussed the character-
ization of nanoparticle-attached brush structures in organic
solvents and polymer matrices. Recently, the characterization of
surface ligand engineering of polymer nanocomposites has been
reviewed by Kumar,223 Koo,224 Mittal,225 and Hussain.3

■ SUMMARY
Surface ligand engineering has been promoting the rapid
evolution of nanocomposites, from compatibilizing inorganic
nanofillers with an organic matrix to introducing tunable
functionalities in addition to the intrinsic properties of
nanofiller and matrix. The earliest use of surface ligand
engineering includes stabilization of nanofillers in solvent
suspensions, where the enthalpic-driven aggregation can be
readily counterbalanced. The stable solvent suspensions later
offer exciting opportunities for post functionalization of
nanoparticles with functional surface ligands, which can be
composed of a single ligand species or mixed ligands with
different functionalities or environmental responsiveness.
Polymer nanocomposite systems, on the other hand, possess
more complex enthalpic and entropic nanofiller/matrix
interactions, and therefore have a narrower window for good
dispersion of nanofillers. Compared to a single population of
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matrix-compatible polymer brushes, where the enthalpic and
entropic interactions are coupled, a bimodal brush system has
proven to expand the dispersion window by decoupling the
efforts on enthalpically screening core/core attraction and
entropically facilitating brush/matrix interpenetration. Adding
another level of complexity to the polymer nanocomposite, a
multimodal brush system provides not only highly integrated
functionalities but also good matrix compatibility, leading to
more innovative solutions to widespread applications.
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(88) Lü, C.; Gao, J.; Fu, Y.; Du, Y.; Shi, Y.; Su, Z. A Ligand Exchange
Route to Highly Luminescent Surface-Functionalized Zns Nano-
particles and Their Transparent Polymer Nanocomposites. Adv. Funct.
Mater. 2008, 18, 3070−3079.
(89) Raimondo, C.; Reinders, F.; Soydaner, U.; Mayor, M.; Samorì,
P. Light-Responsive Reversible Solvation and Precipitation of Gold
Nanoparticles. Chem. Commun. 2010, 46, 1147−1149.
(90) Wu, T.; Zou, G.; Hu, J.; Liu, S. Fabrication of Photoswitchable
and Thermotunable Multicolor Fluorescent Hybrid Silica Nano-
particles Coated with Dye-Labeled Poly (N-Isopropylacrylamide)
Brushes. Chem. Mater. 2009, 21, 3788−3798.
(91) Li, C.; Hu, J.; Liu, S. Engineering Fret Processes within
Synthetic Polymers, Polymeric Assemblies and Nanoparticles Via
Modulating Spatial Distribution of Fluorescent Donors and Acceptors.
Soft Matter 2012, 8, 7096−7102.
(92) Li, C.; Zhang, Y.; Hu, J.; Cheng, J.; Liu, S. Reversible Three-
State Switching of Multicolor Fluorescence Emission by Multiple
Stimuli Modulated Fret Processes within Thermoresponsive Polymeric
Micelles. Angew. Chem. 2010, 122, 5246−5250.
(93) Listorti, A.; O’Regan, B.; Durrant, J. R. Electron Transfer
Dynamics in Dye-Sensitized Solar Cells. Chem. Mater. 2011, 23,
3381−3399.
(94) Bang, J. H.; Kamat, P. V. Cdse Quantum Dot−Fullerene Hybrid
Nanocomposite for Solar Energy Conversion: Electron Transfer and
Photoelectrochemistry. ACS Nano 2011, 5, 9421−9427.
(95) Rochford, J.; Galoppini, E. Zinc (II) Tetraarylporphyrins
Anchored to TiO2, ZnO, and ZrO2 Nanoparticle Films through Rigid-
Rod Linkers. Langmuir 2008, 24, 5366−5374.
(96) Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R.
Surface Modification of Inorganic Nanoparticles for Development of
Organic-Inorganic Nanocomposites−a Review. Prog. Polym. Sci. 2013,
38, 1232−1261.
(97) Li, S.; Lin, M. M.; Toprak, M. S.; Kim, D. K.; Muhammed, M.
Nanocomposites of Polymer and Inorganic Nanoparticles for Optical
and Magnetic Applications. Nano Rev. 2010, 1, 5214.
(98) Liu, J. G.; Ueda, M. High Refractive Index Polymers:
Fundamental Research and Practical Applications. J. Mater. Chem.
2009, 19, 8907−8919.
(99) Srivastava, S.; Haridas, M.; Basu, J. Optical Properties of
Polymer Nanocomposites. Bull. Mater. Sci. 2008, 31, 213−217.
(100) Sanchez, C.; Lebeau, B.; Chaput, F.; Boilot, J. P. Optical
Properties of Functional Hybrid Organic−Inorganic Nanocomposites.
Adv. Mater. 2003, 15, 1969−1994.
(101) Tao, P.; Li, Y.; Rungta, A.; Viswanath, A.; Gao, J.; Benicewicz,
B. C.; Siegel, R. W.; Schadler, L. S. TiO2 Nanocomposites with High
Refractive Index and Transparency. J. Mater. Chem. 2011, 21, 18623−
18629.

(102) Nelson, J. K.; Hu, Y. Nanocomposite Dielectrics-Properties
and Implications. J. Phys. D: Appl. Phys. 2005, 38, 213−222.
(103) Lü, C.; Yang, B. High Refractive Index Organic−Inorganic
Nanocomposites: Design, Synthesis and Application. J. Mater. Chem.
2009, 19, 2884−2901.
(104) Martinez, Y.; Retuert, J.; Yazdani-Pedram, M.; Cölfen, H.
Transparent Semiconductor−Polymer Hybrid Films with Tunable
Optical Properties. J. Mater. Chem. 2007, 17, 1094−1101.
(105) Lee, S.; Shin, H. J.; Yoon, S. M.; Yi, D. K.; Choi, J. Y.; Paik, U.
Refractive Index Engineering of Transparent ZrO2−Polydimethylsilox-
ane Nanocomposites. J. Mater. Chem. 2008, 18, 1751−1755.
(106) Meli, L.; Arceo, A.; Green, P. F. Control of the Entropic
Interactions and Phase Behavior of Athermal Nanoparticle/Homo-
polymer Thin Film Mixtures. Soft Matter 2009, 5, 533−537.
(107) Tahir, M. N.; Eberhardt, M.; Theato, P.; Faiß, S.; Janshoff, A.;
Gorelik, T.; Kolb, U.; Tremel, W. Reactive Polymers: A Versatile
Toolbox for the Immobilization of Functional Molecules on TiO2

Nanoparticles. Angew. Chem., Int. Ed. 2006, 45, 908−912.
(108) Fillery, S. P.; Koerner, H.; Drummy, L.; Dunkerley, E.;
Durstock, M. F.; Schmidt, D. F.; Vaia, R. A. Nanolaminates: Increasing
Dielectric Breakdown Strength of Composites. ACS Appl. Mater.
Interfaces 2012, 4, 1388−1396.
(109) Tanaka, T.; Montanari, G.; Mulhaupt, R. Polymer Nano-
composites as Dielectrics and Electrical Insulation-Perspectives for
Processing Technologies, Material Characterization and Future
Applications. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 763−784.
(110) Thomas, P.; Dakshayini, B.; Mahadevaraju, G. High
Permittivity Poly (Methyl Methacrylate)/Sr2timno6 Composites for
High Energy Storage Capacitor Application. Int. J. Curr. Eng. Technol.
2013, Special Issue-1, 129−134.
(111) Takala, M.; Ranta, H.; Nevalainen, P.; Pakonen, P.; Pelto, J.;
Karttunen, M.; Virtanen, S.; Koivu, V.; Pettersson, M.; Sonerud, B.
Dielectric Properties and Partial Discharge Endurance of Polypropy-
lene-Silica Nanocomposite. IEEE Trans. Dielectr. Electr. Insul. 2010, 17,
1259−1267.
(112) Roy, M.; Nelson, J. K.; MacCrone, R. K.; Schadler, L. S.
Candidate Mechanisms Controlling the Electrical Characteristics of
Silica/Xlpe Nanodielectrics. J. Mater. Sci. 2007, 42, 3789−3799.
(113) Calebrese, C.; Hui, L.; Schadler, L. S.; Nelson, J. K. A Review
on the Importance of Nanocomposite Processing to Enhance
Electrical Insulation. IEEE Trans. Dielectr. Electr. Insul. 2011, 18,
938−945.
(114) Hong, J.; Winberg, P.; Schadler, L.; Siegel, R. Dielectric
Properties of Zinc Oxide/Low Density Polyethylene Nanocomposites.
Mater. Lett. 2005, 59, 473−476.
(115) Lewis, T. Interfaces and Nanodielectrics Are Synonymous.
IEEE Int. Conf. Solid Dielectr. 2004, 2, 792−795.
(116) Nelson, J.; Reed, C.; Utracki, L.; MacCrone, R. Role of the
Interface in Determining the Dielectric Properties of Nanocomposites.
IEEE Conf. Electr. Insul. Dielectr. Phenom. 2004, 314−317.
(117) Nelson, J. K. Overview of Nanodielectrics: Insulating Materials
of the Future. Electr. Insul. Conf. Electr. Manuf. Expo. 2007, 229−235.
(118) Roy, M.; Nelson, J.; MacCrone, R.; Schadler, L.; Reed, C.;
Keefe, R. Polymer Nanocomposite Dielectrics-the Role of the
Interface. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 629−643.
(119) Travelpiece, A.; Nelson, J.; Schadler, L.; Schweickart, D.
Dielectric Integrity of High-Temperature Nanocomposites. IEEE Conf.
Electr. Insul. Dielectr. Phenom. 2008, 571−574.
(120) Zhang, C.; Stevens, G. C. The Dielectric Response of Polar and
Non-Polar Nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 2008, 15,
606−617.
(121) Roy, M.; Nelson, J. K.; Schadler, L.; Zou, C.; Fothergill, J. C.
The Influence of Physical and Chemical Linkage on the Properties of
Nanocomposites. IEEE Conf. Electr. Insul. Dielectr. Phenom. 2005, 183−
186.
(122) Kuo, D.; Chang, C.; Su, T.; Wang, W.; Lin, B. Dielectric
Properties of Three Ceramic/Epoxy Composites. Mater. Chem. Phys.
2004, 85, 201−206.

ACS Applied Materials & Interfaces Spotlight on Applications

dx.doi.org/10.1021/am405332a | ACS Appl. Mater. Interfaces 2014, 6, 6005−60216018



(123) Nelson, J.; Hu, Y.; Thiticharoenpong, J. Electrical Properties of
TiO2 Nanocomposites. Annu. Rep. Conf. Electr. Insul. Dielectr. Phenom.
2003, 719−722.
(124) Nelson, J. K.; Fothergill, J. C. Internal Charge Behaviour of
Nanocomposites. Nanotechnology 2004, 15, 586.
(125) Cao, Y.; Irwin, P. C.; Younsi, K. The Future of Nanodielectrics
in the Electrical Power Industry. IEEE Trans. Dielectr. Electr. Insul.
2004, 11, 797−807.
(126) Calebrese, C.; Hui, L.; Schadler, L. S.; Nelson, J. K.
Fundamentals for the Compounding of Nanocomposites to Enhance
Electrical Insulation Performance. IEEE Int. Power Modulator High
Voltage Conf. 2010, 38−41.
(127) Ma, D.; Hugener, T. A.; Siegel, R. W.; Christerson, A.;
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